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Abstract—High data rate coherent communication in acoustic
channels are difficult due to the compound effects of motion-
induced Doppler and long multipath. To account for these effects,
we consider a coherent receiver based on orthogonal frequency
division multiplexing (OFDM) which performs an iterative fre-
quency offset compensation and sparse channel estimation. In
mobile acoustic systems, Doppler effect can be severe enough that
the OFDM signals experiences non-negligible frequency offsets
even after initial resampling. To compensate for these offsets, a
practical method based on stochastic gradient is employed. The
method relies on differential encoding which keeps the receiver
complexity at a minimum and requires only a small pilot over-
head. Differential encoding is applied across carriers, promoting
the use of a large number of closely spaced carriers within a given
bandwidth. This approach simultaneously supports frequency
domain coherence and efficient use of bandwidth for achieving
high bit rates. After compensating for the frequency offset, a
sparse channel estimation method based on a physical model of
multipath propagation is used to obtain channel state information
for coherent detection. The channel estimation method, referred
to as path identification (PI), targets the physical propagation
paths in a continuous-delay domain, and focuses on explicit
estimation of delays and complex amplitudes of the channel paths
in an iterative fashion. Using the experimental data transmitted
over a 3-7 km shallow water channel in the 10.5-15.5 kHz
acoustic band, we study the receiver performance in terms of
data detection mean squared error (MSE) and bit error rate
(BER), and show that the proposed receiver provides excellent
performance at low computational cost.

I. INTRODUCTION

High data rate coherent transmission over acoustic channels

is a challenging problem due to the combined effects of

long multipath and Doppler fluctuations. To account for these

effects, we consider a coherent receiver based on multicarrier

modulation in the form of orthogonal frequency division

multiplexing (OFDM). OFDM is an attractive method for data

transmission over frequency-selective channels due to its abil-

ity to achieve high bit rates at reasonably low computational

loads. This fact motivates the use of OFDM in mobile acoustic

communications where the channel exhibits long multipath de-

lays but each narrowband carrier only experiences flat fading,

thus eliminating the need for time-domain equalizers [1]–[3].

Applying OFDM to acoustic channels is made difficult by

its sensitivity to the Doppler distortion caused by relative

motion between the transmitter and receiver, which results

in frequency shifting. For the relative transmitter/receiver

velocity v and the propagation speed c (nominally 1500 m/s),

Doppler scaling occurs at the rate a = v/c. In highly mobile

scenarios, where v is on the order of a few m/s, Doppler

frequency scaling is effectively seen as a time-varying channel

distortion which adversely affects the performance of OFDM

systems as it causes loss of orthogonality between the carriers.

To mitigate the resulting distortion, front-end resampling must

be performed [1]–[3]. Since coarse resampling is typically

performed on an entire frame of OFDM blocks, each block

within a frame may still experience different frequency off-

sets. We target these frequency offsets through a stochastic

gradient approach as an iterative version of the hypothesis

testing method proposed in [4]. The approach is based on

differentially encoding which keeps the receiver complexity

at a minimum and requires only a very low pilot overhead.

Differential encoding is applied across carriers, promoting the

use of a large number of carriers within a given bandwidth [3].

Coherent detection of OFDM signals requires the knowl-

edge of channel coefficients in the frequency domain. To

estimate the channel coefficients, in this paper, we formulate

the problem of sparse channel estimation in a manner that

capitalizes on a physical model of multipath propagation.

The resulting approach, termed path identification (PI), targets

a continuum of path delays, eliminating the conventional

sample-spaced models and focusing instead on processing a

transformed version of the signal observed over all the carriers

spanning the system bandwidth. The PI algorithm focuses on

explicit estimation of delays and complex amplitudes of the

channel paths. Unlike the sparse identification methods [5],

[6], the resolution and coverage in delay that the PI method

provides can be increased arbitrarily without a prohibitive cost

to complexity [7].

While [7], [8] illustrate the benefits of the frequency offset

and channel estimation algorithms separately, in this paper we

consider these algorithms operating in tandem and demonstrate

their performance on experimental data from the Mobile

Acoustic Communication Experiment (MACE 2010) showing

excellent results. In the MACE’10 experiment, OFDM blocks

containing 1024 8-PSK modulated carriers, which occupy the

acoustic frequency range 10.5-15.5 kHz, were transmitted over

a long-range (3-7 km) shallow water channel (about 100 m

deep) and received over a 12-element vertical array spanning a

total linear aperture of 1.32 m. The results lead us to conclude

that the proposed coherent receiver is especially well-suited for

implementation in acoustic multicarrier systems.

The rest of the paper is organized as follows. In Sec. II,

we introduce the signal, system and channel model. Sec. III

discusses the receiver algorithms used for coherent detection.

Sec. IV contains the results of experimental data processing.

Sec.V contains the conclusions.



II. SIGNAL, SYSTEM AND CHANNEL MODEL

We consider an OFDM system with Mr equi-spaced re-

ceivers and K carriers within a total bandwidth B. Let f0
and ∆f = B/K denote the first carrier frequency and carrier

spacing, respectively. We assume the use of zero-padding at

the transmitter along with the overlap-and-add procedure at

the receiver. The transmitted OFDM block is then given by

s(t) = Re

{

K−1
∑

k=0

dke
2πifkt

}

, t ∈ [0, T ] (1)

where T = 1/∆f is the OFDM block duration. The data

symbol dk, which modulates the k-th carrier of frequency

fk = f0+k∆f , belongs to a unit-amplitude phase shift keying

alphabet (PSK).

The transmitted signal passes through Mr multipath acous-

tic channel whose impulse responses can be modeled as

hm(τ, t) =
∑

p

hm
p (t)δ(τ − τmp (t)) (2)

where hm
p (t) and τmp (t) represent the gain and delay of the

pth path, respectively. We isolate a common Doppler scaling

factor a such that τmp (t) ≈ τmp − at, and further assume that

the path gains are slowly varying such that hm
p (t) ≈ hm

p for

the duration of one OFDM block. With these notions, we can

rewrite (2) as

hm(τ, t) ≈
∑

p

hm
p δ(τ − τmp + at), m = 1, . . . ,Mr (3)

where the path delays τmp have a continuum of values.

After frame synchronization, initial resampling, which is

performed based on the method proposed in [8], and down-

conversion, the lowpass equivalent received signal on the mth

receiving element is modeled as

vm(t) = eiβt
K−1
∑

k=0

Hm
k dke

2πik∆ft + wm(t), t ∈ [0, T ] (4)

where β is the unknown frequency offset assumed common

for all Mr receiving elements, and wm(t) is the additive noise.

The channel frequency response on the kth carrier of the mth

receiving elements Hm
k is given by

Hm
k = Hm(fk) =

∑

p

hm
p e−2πifkτ

m
p =

∑

p

cmp e−2πik∆fτm
p (5)

where cmp = hm
p e−2πif0τ

m
p . We refer to the model (5) as the

physical propagation model (path-based model).

Assuming the same gross frequency offset β for all receiv-

ing elements is plausible when the elements are co-located,

and it helps to promote the multichannel processing gain. The

model (4) captures rough frequency shifting and serves as a

starting point in developing the method for frequency offset

compensation. The finer points of frequency shift changing

across the bandwidth are left to post-FFT processing.

III. PRACTICAL RECEIVER ALGORITHMS

Fig. 1 depicts the receiver processing for each receiving ele-

ment. Next, we discuss the two key blocks, namely frequency

offset estimation and channel estimation.

Frequency offset
compensation

vm(t) FFT
demodulation

Channel
estimation

Coherent symbol
detection

d̂k

Fig. 1. Block diagram of the coherent OFDM receiver. The main building
blocks of the receiver are the frequency offset estimation and channel
estimation. The lowpass equivalent received signal vm(t) is obtained after
frame synchronization, initial resampling, and downshifting and lowpass
filtering. After compensating for the frequency offset, and estimating the
channel coefficients, maximum ratio combining (MRC) yields the data symbol

estimates d̂k .

A. Frequency Offset Estimation

Assuming that the Mr signals are compensated by some

estimated value β̂, demodulation is performed on all the

carriers and receiving elements to yield

ymk (β̂) =
1

T

∫

T

vm(t)e−iβ̂te−2πik∆ftdt (6)

where k = 0, . . . ,K − 1 and m = 1, . . . ,Mr. Arranging

the signals corresponding to carrier k into a vector yk, and

performing differential maximum ratio combining (DMRC),

the estimates of the differentially-encoded data symbols bk =
d∗k−1dk are obtained as 1

b̂k(β̂) =
y′
k−1(β̂)yk(β̂)

y′
k−1(β̂)yk−1(β̂)

,
Nk(β̂)

Dk(β̂)
(7)

where we implicitly assume that the channel frequency re-

sponse changes slowly from one carrier to the next, i.e.

Hm
k−1 ≈ Hm

k , ∀k = 1, . . . ,K − 1 and m = 1, . . . ,Mr.

The error in data symbol estimation is ek(β̂) = bk − b̂k(β̂).
Using pilot data symbols that belong to a set of carriers Kp,

a composite error can be formed as E(β̂) =
∑

k∈Kp
|ek(β̂)|

2,

and this error can be used to close the loop and guide the

estimation of β. The task of the frequency offset estimation

algorithm is to form an estimate of the frequency offset which

will minimize the error in the mean square sense. This task

will be accomplished when the composite error gradient is

zero,

∂E{E(β̂)}

∂β̂
= −2E{ℜ{

∑

k∈Kp

1

Dk

[Ṅk − b̂kḊk]e
∗
k}} = 0 (8)

where dot denotes the derivative with respect to β̂. Using the

instantaneous value of this gradient γ = −2ℜ{
∑

k∈Kp
[Ṅk −

b̂kḊk]e
∗
k/Dk}, β̂ can be calculated iteratively as

β̂(j + 1) = β̂(j) +Kβγ(j) (9)

where Kβ is the frequency offset update parameter. The initial

point β̂(0) can be set to zero when the frequency offset β/2π
is a fraction of carrier spacing ∆f . We will comment on the

initial point and step size shortly. The algorithm can be set to

run either for a prespecified maximum number of iterations

NI or a predefined error threshold ηf . Fig. 2 shows the signal

flow of the frequency offset estimation block.

The performance of the stochastic gradient algorithm de-

pends on the initial point β̂(0). Since the composite error is a

1(·)′ denotes conjugate-transpose.
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Fig. 2. Block diagram of the frequency offset estimation algorithm. The
algorithm is based on differential encoding, and estimates the frequency offset
iteratively based on a stochastic-gradient approach. Kp is the set of pilot

carriers used to form the composite error E(β̂). The total computational cost
of the algorithm is upper-bounded by O(2NIMrK log(K)), where NI is
the maximum number of iterations.

non-convex function of the frequency offset β̂, yet has a global

minimizer, the frequency offset estimation algorithm is prone

to converge to a local minimum [8]. Thus, to obtain a proper

initial point that precludes the algorithm from converging to

local minima, the hypothesis testing approach, proposed in [4],

is applied to the first block to start the process. Assuming

that the frequency offset is changing slowly from one block

to the next, for the second block and on, the initial value of

the update (9) is set to the frequency offset estimated in the

previous block.

Another factor on which the performance of the frequency

offset estimation algorithm relies is the step size Kβ which

dictates the speed of convergence. The step size is automat-

ically computed using the Barzilai-Borwein method [9]. For

the iteration j = 0, Kβ(0) is set to a small value, e.g., 1, to

preclude the algorithm from diverging.

B. Channel Estimation

After compensating for the frequency offset, and assuming

that the frequency offset estimate β̂ is close enough to the true

value, one can assume that there is no inter-carrier interference,

such that the demodulator outputs can be modeled as

ymk = dkH
m
k + zmk (10)

where Hm
k are the channel coefficients and zmk are the noise

components. Assuming without the loss of generality that all

K data symbols are available for channel estimation (e.g.

correct symbol decisions, or all-pilots in an initial block), the

input to the channel estimator is given by xm
k = ymk /dk, i.e.

xm = Hm + zm, m = 1, . . . ,Mr (11)

where Hm =
∑

p cpsK(2π∆fτp) and zm represents

an equivalent noise vector. The vector sK(2π∆fτ) =
[

1 e−2πi∆fτ · · · e−2πi(K−1)∆fτ
]T

is referred to as the

steering vector at an arbitrary delay τ .

Consider now the following operation performed on the

noisy channel observation xm at the mth receiving element:

rm(τ) =
1

K
sHK(2π∆fτ)xm

=
∑

p

cmp gK
(

2π∆f(τ − τmp )
)

+ wm(τ), τ ∈ τobs (12)

where gK(ϕ) = 1
K

∑K−1
k=0 eikϕ is a known signature function,

and wm(τ) is the corresponding complex noise. The interval

τobs is a preset interval that captures the multipath spread. In

a digital implementation, an arbitrary resolution is used, e.g.

∆τ = T/IK, where I represents the resolution factor, i.e.

the increase in resolution over the standard sample spacing

1/B = T/K. The total length of the observation interval is

L = ⌈TgB⌉, where Tg is the guard interval which is at least

as long as the multipath spread.

The signal rm(τ) serves as the input to the PI algorithm. The

algorithm operates recursively, identifying at each iteration

the delay of the next-strongest path in a manner similar to

matching pursuit. The algorithm can be set to run either for a

prespecified number of channel paths NP (sparsity level) or a

predefined residual error threshold ηc.

The formal steps of the PI algorithm are summarized in

Algorithm 1. The last step of the algorithm represents a

refinement in which a least squares problem is solved for

possible improvement in estimating the path gains cmp . This

step is optional. The total complexity of the PI algorithm is

O(ILK) +O(NP IL) +O(KN2
P ) [7].

Algorithm 1 PI algorithm

Input: xm, NP (or ηc)

Output: Ĥm

1: r(0)(τ) = rm(τ) {initialization step}
2: while p ≤ NP (or |r(p)(τ)| > ηmaxτ |rm(τ)|) do

3: τ̂mp = argmaxτ |r
(p)(τ)|

4: ĉmp = r(p)(τ̂mp )

5: r(p+1)(τ) = r(p)(τ)− ĉmp gK
(

2π∆f(τ − τ̂mp
)

)
6: end while

7: Ŝm =
[

sK(2π∆f τ̂m1 ) · · · sK(2π∆f τ̂mNP
)
]

8: ĉm =
(

Ŝ′
mŜm

)−1

Ŝ′
mxm {refinement step}

9: return Ĥm = Ŝmĉm

Using the model (10) yields the Mr-element received signal

vector yk = dkHk + zk, k = 0, . . . ,K − 1 where Hk

and zk contain the relevant channel and noise components,

respectively. Assuming that the channels observed across the

receiver array are uncorrelated, maximum ratio combining

(MRC) finally yields the data estimate

d̂k =
Ĥ′

kyk

‖Ĥk‖22
, k = 0, . . . ,K − 1 (13)

IV. EXPERIMENTAL RESULT

To asses the system performance, we focus on the ex-

perimental data from the Mobile Acoustic Communication

Experiment (MACE’10) which took place off the coast of

Martha’s Vineyard, Massachusetts, in June 2010. The ex-

perimental signals, whose parameters are given in Table I,

were transmitted using the acoustic frequency range between

10.5 kHz and 15.5 kHz. The receiver array of 12 equally-

spaced elements spanning a total linear aperture of 1.32 m was

suspended at the depth of 40 m and the transmitter was towed

at the depth of 40-60 m. The water depth was approximately



100 m, and the transmission distance varied between 3 km

and 7 km.

The experiment consisted of multiple repeated transmis-

sions, each containing all the OFDM signals listed in Table I.

There was a total of 52 transmissions spanning 3.5 hours of

recording. During this time, the transmitting station moved

away and towards the receiving station, at varying speeds

ranging from 0.5 m/s to 1.5 m/s. The results provided in this

section are obtained from all 52 transmissions.

TABLE I
MACE’10 SIGNAL PARAMETERS.

number of carriers K 1024

modulation 8-PSK

number of blocks per frame NB 8

carrier spacing ∆f [Hz] 4.8

bit rate [kbps] 12

bandwidth efficiency [bps/Hz] 2.4

The guard interval is Tg = 16 msec. The bandwidth efficiency is
calculated assuming 136 pilots for coherent data detection, out of which
only 8 pairs of adjacent carriers are used for frequency offset estimation.

We illustrate the performance of the proposed receiver on

an exemplary OFDM frame from the MACE’10 experiment.

In Fig. 3, we illustrate the receiver operation on one OFDM

frame containing 8 blocks each with K = 1024 carriers

modulated by 8-PSK data symbols. Shown are the frequency

offset estimate for the 8 blocks in the underlying frame,

the evolution of the instantaneous gradient γ(j), algorithm

convergence plot obtained for the last block in the frame,

the channel frequency and impulse responses seen on the 12
available receiving elements, and the last block’s scatter plot.

Due to the random channel variation and a finite number of

measurements, the data detection MSE is a random variable.

Thus, we demonstrate the performance of the system in terms

of the estimated cumulative density function (CDF) of the data

detection MSE measured in each signal frame. Furthermore,

we show the bit error rate (BER) of the system when low-

density parity check (LDPC) codes are used with various code

rates. We also compare the coherent receiver discussed in this

paper with two differentially-coherent receivers, namely, one

with frequency offset estimation and one without that.

Fig. 4 illustrates the estimated cumulative density function

of the MSE per block. This result refers to K = 1024 carries

and includes all the frames, transmitted over 3.5 hours. The

coherent receiver equipped with the algorithms discussed in

this paper delivers MSE below −14 dB for 90% of the OFDM

blocks conveying 8-PSK symbols. Fig. 4 also shows that

the coherent receiver outperforms the differentially-coherent

receiver which uses the same algorithm for frequency offset

compensation. Fig. 4 also accentuates the key role that esti-

mating motion-induced frequency offsets plays in successfully

detecting data symbols.

Finally, in Fig. 5 we address the performance of the system

in which regular low-density parity check (LDPC) codes

are used. We consider various code rates ranging from 0.1
to 1, and evaluate the system performance in terms of the

average bit error rate (BER). We use soft decision decoding

that takes the likelihood ratio for each code-bit as an input.

Decoding is performed based on the probability propagation

algorithm which can be seen as an instance of the sum-

product algorithm [10]. The stochastic gradient algorithm for

frequency offset estimation and the PI algorithm for channel

estimation enable LDPC to work to its full potential. With code

rate as high as 0.7, the coherent receiver achieves the BER of

2 × 10−5. Lower code rates resulted in no errors measurable

with the data at hand.

V. CONCLUSION

We considered coherent detection of acoustic OFDM signals

passed through mobile acoustic channels. We targeted the

frequency offset through a stochastic gradient algorithm that

is based on differential encoding, keeping the complexity of

the receiver at a minimum. The key feature of the algorithm is

that only a few pilots suffice to determine the frequency shift.

We also investigated a sparse channel estimation method, path

identification, that operates on the transformed version of the

input signal to identify the dominant propagation paths. Unlike

the conventional sample-space channel estimation methods,

path identification considers a continuum of delays and allows

for increasing the delay resolution without undue penalty on

complexity.

We presented a statistical performance analysis using exper-

imental signals recorded over a mobile acoustic channel. Our

results show that the proposed coherent receiver delivers an

average MSE below −14 dB for 90% of OFDM blocks and

enables a very high rate LDPC code to achieve an excellent

BER of 5× 10−5 at very low computational complexity.
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Fig. 3. Performance illustration for an OFDM frame with 8 blocks and K = 1024 carriers modulated by 8-PSK data symbols. Shown are the frequency offset
estimate for the entire frame, the evolution of the gradient γ(j) for the last block, the algorithm convergence plot obtained for the last block, the estimates of
channel frequency response and channel impulse response, and the last block’s scatter plot. The total number of pilots used to perform the frequency offset
and channel estimation is 136, out of which only 8 differentially-encoded pilots are used to do frequency offset estimation. The hypothesis testing approach is
applied to the first block. For the second block and on, the initial value of the update (9) is set to the frequency offset estimated in the previous block (shown
in (a) with colored circle). The step size Kβ is set to 1 in the first iteration and then updated using the Barzilai-Borwein method. For the PI, the resolution
factor I and the threshold ηc are set to 2 and 0.1, respectively. In the last block, the data detection MSE is −18 dB and there are no symbols errors.
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Fig. 4. The estimated CDF of the data detection MSE. The CDFs reflect all
52 transmission with K = 1024 carriers during MACE’10. For frequency
offset estimation, the stochastic gradient algorithm terminates if the absolute
difference between composite errors in two consecutive iterations is less than
ηf = 0.1. While the differentially-coherent receiver delivers MSE below
−12 dB for 90% of block, the coherent receiver delivers MSE below −14 dB
with the same level of reliability. The performance of the coherent and
differentially-coherent receivers equipped with the frequency offset estimation
algorithm is compared to that of the differentially-coherent receiver without
any frequency offset estimation (w/o FOE). Clearly, FOE is essential to proper
operation.

0.2 0.4 0.6 0.8 1
10

-6

10
-4

10
-2

Fig. 5. Average BER versus the rate of the LDPC code. The codeword
length is N = 3K; thus, each codeword constitutes an OFDM block. The
column weight of the M × N parity check matrix (M is the number of
parity bits) is wc = 3 for all the code rates considered, and the row weight
wr = wcN/M varies from 3.3 to 30, corresponding to the code rates ranging
from 0.1 to 0.9 [11]. The results reflect all 52 transmissions of blocks with
1024 carriers during MACE’10. Using code rates as high as 1, the coherent
detection enables excellent performance with BER = 2×10−3 for ZP-OFDM
blocks whose carriers are 8-PSK modulated. Code rates below 0.7 result in
low BER values that cannot be measured with the existing data.


